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Abstract— Automated melanoma recognition in der-
moscopy images is a very challenging task due to the low
contrast of skin lesions, the huge intraclass variation of
melanomas, the high degree of visual similarity between
melanoma and non-melanoma lesions, and the existence
of many artifacts in the image. In order to meet these
challenges, we propose a novel method for melanoma
recognition by leveraging very deep convolutional neural
networks (CNNs). Compared with existing methods employ-
ing either low-level hand-crafted features or CNNs with
shallower architectures, our substantially deeper networks
(more than 50 layers) can acquire richer and more dis-
criminative features for more accurate recognition. To take
full advantage of very deep networks, we propose a set of
schemes to ensure effective training and learning under
limited training data. First, we apply the residual learning to
cope with the degradation and overfitting problems when
a network goes deeper. This technique can ensure that
our networks benefit from the performance gains achieved
by increasing network depth. Then, we construct a fully
convolutional residual network (FCRN) for accurate skin
lesion segmentation, and further enhance its capability by
incorporating a multi-scale contextual information integra-
tion scheme. Finally, we seamlessly integrate the proposed
FCRN (for segmentation) and other very deep residual net-
works (for classification) to form a two-stage framework.
This framework enables the classificationnetwork to extract
more representative and specific features based on seg-
mented results instead of the whole dermoscopy images,
further alleviating the insufficiency of training data. The pro-
posed framework is extensively evaluated on ISBI 2016 Skin
Lesion Analysis Towards Melanoma Detection Challenge
dataset. Experimental results demonstrate the significant
performance gains of the proposed framework, ranking
the first in classification and the second in segmentation
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among 25 teams and 28 teams, respectively. This study
corroborates that very deep CNNs with effective training
mechanisms can be employed to solve complicated medical
image analysis tasks, even with limited training data.

Index Terms— Automated melanoma recognition, fully
convolutionalneural networks, residual learning, skin lesion
analysis, very deep convolutional neural networks.

I. INTRODUCTION

MELANOMA is a type of cancer that mostly starts
in pigment cells (melanocytes) in the skin. It is

regarded as the most deadly form of skin cancer and accounts
for about 75% of deaths associated with skin cancer [1].
According to American Cancer Society, about 76380 new
cases of melanomas are estimated to be diagnosed and about
10130 fatalities are estimated in United States in 2016 [2].
Fortunately, if melanoma is detected in its early stages and
treated properly, the survival rate is very high [3], [4].

In order to improve the diagnostic performance
of melanoma, dermoscopy technique was developed.
Dermoscopy is a noninvasive skin imaging technique of
acquiring a magnified and illuminated image of a region
of skin for increased clarity of the spots on the skin [5].
By removing surface reflection of skin, it can enhance the
visual effect of deeper levels of skin and hence provide
more details of skin lesions. Dermoscopy assessment is
widely used in the diagnosis of melanoma and obtains much
higher accuracy rates than evaluation by naked eyes [6].
Nevertheless, the manual inspection from dermoscopy images
made by dermatologists is usually time-consuming, error-
prone and subjective (even well trained dermatologists may
produce widely varying diagnostic results) [5]. In this regard,
automated recognition approaches are highly demanded.

Automated melanoma recognition from dermoscopy
images is, however, a very challenging task. First, the huge
intraclass variation of melanomas in terms of color, texture,
shape, size and location in the dermoscopy images as well
as the high degree of visual similarity between melanoma
and non-melanoma lesions make it difficult to discriminate
melanomas from non-melanoma skin lesions. Second, the
relatively low contrasts and obscure boundaries between
skin lesions (especially at their early stages) and normal
skin regions make the automated recognition task even
harder. Finally, the presence of artifacts, either natural (hairs,
veins) or artificial (air bubbles, ruler marks, color calibration
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Fig. 1. Automated melanoma recognition from dermoscopy images is a
very challenging task. The main challenges include (from top to bottom):
high degree of visual similarity between melanoma and non-melanoma
lesions, relatively low contrast between skin lesions and normal skin
regions, and artifacts in images. The left column images show non-
melanomas and right column images show melanomas. Blue contours
indicate the skin lesions.

charts, etc.) may blur or occlude the skin lesions and further
aggravate the situation. We show these challenges by some
examples in Fig. 1.

A lot of efforts have been dedicated to solving this
challenging problem. Early investigations attempted to apply
low-level hand-crafted features to distinguish melanomas from
non-melanoma skin lesions, including shape [7], color [8], [9]
and texture [10], [11]. Some researchers further proposed to
employ feature selection algorithms to select proper features
and utilized combinations of these low-level features to
improve the recognition performance [12], [13]. However,
these hand-crafted features are incapable of dealing with the
huge intraclass variation of melanoma and the high degree
of visual similarity between melanoma and non-melanoma
lesions, as well as the artifacts existing in dermoscopy
images, leading to unsatisfactory results. On the other hand,
some researchers also proposed to perform segmentation first
and then based on the segmentation results to recognize the
melanomas [11]–[14]. The segmentation allows the feature
extraction procedure to be conducted only on the lesion
regions and thus generate more specific and representative
features. But in these methods, both the segmentation and
classification procedures are still based on low-level features
with limited discrimination capability.

Recently, convolutional neural networks (CNNs) with
hierarchical feature learning capability have led to
breakthroughs in many medical image analysis tasks,
including classification [15], [16], detection [17]–[20] and
segmentation [21], [22]. Some researchers started to employ
CNNs for melanoma classification, aiming at taking advantage

of their discrimination capability to achieve performance gains.
Codella et al. proposed to integrate CNNs, sparse coding and
support vector machine (SVM) for melanoma recognition [23].
Kawahara et al. presented a fully convolutional neural network
based on AlexNet [24] to extract representative features of
melanoma [25]. But these methods either just rely on
the features trained from natural image dataset (such as
ImageNet [26]) without sufficiently considering the
characteristics of melanoma or utilize CNNs with quite
shallow architecture. They can not well deal with the
challenges of melanoma recognition. There is still much room
to tap the potentials of CNNs to further improve the accuracy
of melanoma recognition.

Many theoretical investigations [27], [28] and practical
studies [29], [30] have demonstrated that network depth is
a major factor of model expressiveness. The discrimination
capability of features learned from CNNs can be enriched
by increasing the number of stacked layers (network depth).
The performance gain of very deep networks in natural image
processing tasks has been exploited by recent works [29]–[31].
A straightforward thought is that if we can harness very
deep networks to solve challenging medical image analysis
problems, such as melanoma recognition. However, finding a
good solution is not that straightforward. One of the main
concerns is that, compared with natural image processing
problems, the training data of medical applications is usually
quite limited. This makes it difficult to effectively train very
deep networks with a large amount of parameters. Another
challenge is that the interclass variation in medical image
analysis tasks is usually much smaller than that in natural
image processing tasks (e.g., the interclass variation between
melanoma and non-melanoma lesions is much smaller that
interclass variation between person and car).

In this paper, we propose a novel method based on very
deep CNNs with a set of effective training schemes in order
to meet the challenges of automated melanoma recognition.
Similar to some previous works, we propose to first segment
the skin lesions from dermoscopy images and then classify
them into melanoma ones and non-melanoma ones so that the
classification stage can extract more specific and representative
features within the lesion regions instead of performing it in
the whole dermoscopy images. We employ very deep networks
(more than 50 layers) for both the segmentation and the classi-
fication stages in order to obtain more discriminative features
for more accurate recognition. To overcome the degradation
problem [32] when a network goes deeper, we utilize residual
learning technique [31] in our framework. For effective and
accurate skin lesion segmentation, we further construct a
fully convolutional residual network (FCRN) incorporating
a multi-scale contextual information integration scheme. We
extensively evaluate the proposed framework on ISBI 2016
Skin Lesion Analysis Towards Melanoma Detection Challenge
dataset. Experimental results demonstrate the significant per-
formance gains of the proposed framework, ranking the first in
classification and the second in segmentation among 25 teams
and 28 teams, respectively.

The main contributions of our work can be summarized as
follows:
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Fig. 2. The flowchart of the proposed framework. (a) Illustration of the �th residual block. x is the number of feature maps of output. We use
1 × 1 convolutional layers to reduce (and restore) the dimensions. (b) Architectures of fully convolutional residual network (FCRN) for skin lesion
segmentation and very deep residual network (DRN) for skin lesion classification. Both of the two networks are trained using the residual learning
technique. The numbers above residual blocks represent the number of feature maps. The down-sampling operator is performed by 7×7 convolutional
layer (stride is 2), max pooling layer (stride is 2) and convolutional layers (stride is 2) appearing in the first convolutional layers of block 4, 8 and 14.

1) We propose a novel and comprehensive two-stage
approach based on very deep CNNs with a set of
effective training schemes to ensure the performance
gains of increasing network depth with limited training
data for automated melanoma recognition. To the best
of our knowledge, we are not aware of any previous
work that employs such substantially deeper networks
(more than 50 layers) in medical image analysis field.
Experiments demonstrate that, compared with much
shallower counterparts, the very deep CNNs are capable
of acquiring richer and more discriminative features and
achieving better performance.

2) We propose a very deep fully convolutional residual
network (FCRN) for accurate skin lesion segmentation,
and further enhance its capability by incorporating a
multi-scale contextual information integration scheme.
The network is general enough and can be easily
extended to solve other medical image segmentation
tasks with targeting objects having large variations.

3) We compare the performance of networks with differ-
ent depths and corroborate that very deep CNNs with
effective training mechanisms can be employed to solve
complicated medical image analysis tasks, even with
limited training data. This may inspire more studies to
tap the potentials of network depth of CNNs to solve
challenging medical image analysis problems.

The remainder of this paper is organized as follows.
We introduce the details of our method in Section II.
Experiments and results are reported in Section III. We further
discuss our method in Section IV and conclusions are drawn
in Section V.

II. METHODS

As mentioned above, melanomas have huge intraclass
variation and there is a high degree of visual similarity

between melanoma and non-melanoma lesions, which will
severely influence the recognition performance if we directly
perform skin lesion classification on original dermoscopy
images, especially considering the limited training data in
our hand. In this regard, we propose to meet these challenges
using a two-stage framework, as shown in Fig. 2 (b). We first
construct a very deep fully convolutional residual network,
which incorporates multi-scale feature representations,
to segment skin lesions. Based on the segmentation results,
we employ a very deep residual network to precisely
distinguish melanomas from non-melanoma lesions. In this
section, we first briefly introduce the background and basics
of residual networks (Section II-A) and then detail the
proposed FCRN for segmentation (Section II-B) and the deep
residual network for classification (Section II-C), respectively.

A. Background on Very Deep Residual Networks

Although some progress has been achieved by deep learning
based methods in automated melanoma recognition [23], [25],
there is still a gap between the results of expert assessment
and the results obtained from automated methods due to the
challenges mentioned above [7]. In this regard, how to learn
more discriminative representations of skin lesions for more
robust analysis with limited training data is still an open
problem. Computational theory has evidenced that the network
depth is a key factor of model expressiveness for a long
time [27], [28]. Recent research works on large-scale image
recognition tasks further demonstrate that increasing network
depth can achieve significant quality gains [29], [30]. Inspired
by these works, we propose to exploit very deep CNNs, aiming
at extracting more discriminative features, to cope with this
challenging task.

However, exploiting very deep networks is not as easy
as stacking more layers. Training a very deep network for
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effective skin lesion analysis is quite difficult. When a network
goes deeper, its accuracy gets saturated and even degrades
rapidly aimed converging to a solution [31]. In other words,
it is usually more difficult for a deeper network to find an
optimal solution than its shallower counterparts. In this regard,
we have to effectively deal with the degradation problem [31]
when training a deeper network to hold on the performance
gains achieved by increasing the network depth. In addition,
the vanishing gradient problem may become more obvious
when training a deeper network, making it difficult to tune
the parameters of the early layers in the network [33], [34].
Furthermore, in skin lesion analysis, as well as many other
medical image analysis tasks, limited quantity training dataset
further exacerbate the difficulties in training a very deep
network, as deeper networks usually have more parameters
than shallower counterparts and require more training samples
to retain their generalization capability.

Recent years, some training schemes have been proposed to
effectively train a network when its layers increases, including
careful initialization [34], deep supervision in hidden lay-
ers [35], and batch normalization [36]. While these schemes
can largely alleviate the vanishing gradients problem, they are
incapable of handling the degradation problem and do not
experimentally demonstrate accuracy gains with substantially
increased depth [37]. In order to ease the training of very deep
networks and take full advantage of its performance gains, we
exploit the newly developed residual learning technique [31]
to train our skin lesion analysis framework. This technique
introduces extra skip connections to improve the information
flow within the network and explicitly reformulate the layers
as learning residual functions with reference to the layer
inputs and, by this way, addresses the degradation problem
of deeper network. Meanwhile, we also employ some widely
used mechanisms, such as batch normalization, to deal with
the vanishing gradients problem. We briefly introduce the
fundamentals of residual leaning here and readers can refer
to [31], [37] for more details.

A deep residual network is composed of a set of residual
blocks, each of which consists a few stacked layers (e.g.,
convolutional layers, rectified linear unit layers and batch
normalization layers). Given the �-th residual block Bl , if we
denote the input and output of Bl as H�−1 and H� respectively,
and employ H�(x) to represent the underlying mapping of
these stacked layers, in traditional way, we can obtain:

H� = H�(H�−1). (1)

However, when leveraging residual learning, instead of mak-
ing these stacked layers to approximate underlying map-
ping H�(x), we want them to fit another residual mapping
function F�(x) := H�(x) − x. In this case, the output of this
residual mapping is H�−H�−1 and Eq. (1) can be rewritten as:

H� = F�(H�−1) + H�−1, (2)

where F�(x) is the residual mapping function that residual
block Bl learns. Note that it is easier to optimize the
residual mapping than to optimize the original, unreferenced
mapping [31].

Fig. 2 (a) illustrates a typical residual block, which consists
of convolutional (conv), Rectified Linear Unit (ReLU) and
batch normalization (Batch Norm) layers. In practice, the
operation of residual learning can be performed by short-
cut connections and element-wise additions. Note that the
dimensions of input and output of residual block B� should
be equal when using shortcut connections. However, in most
cases, we need to change the dimensions of feature maps
(such as downsampling operations). In this regard, a linear
projection Ws is employed to match dimensions of input and
output. Specifically, the Eq. (2) can be further converted to:

H� = F�(H�−1) + id(H�−1)

id(x) = Wsx, (3)

where id(·) represents the identity transformation and it is a
linear projection. After constructing the residual block, we can
build very deep networks by stacking residual blocks.

B. FCRN for Skin Lesion Segmentation

1) Fully Convolutional Residual Network: The net-
works proposed in [31] are designed for classification.
In order to achieve accurate and efficient skin lesion seg-
mentation, we further construct a fully convolutional resid-
ual network (FCRN) based on residual blocks, which can
take an arbitrary-sized image as input and output an equal-
sized prediction score mask. After successive down-sampling
operations in the original residual network, the dimensions of
feature maps are gradually reduced and become much smaller
than that of the original input image. To bridge the resolution
gap so that both the learning and inference procedures can
be performed in an efficient end-to-end way, we exploit
deconvolutional layers as the up-sampling operation to connect
coarse predict maps and dense pixels predictions [38], [39].
Specifically, we use deconvolutional layers to upsample small
prediction maps and get the equal-sized prediction maps with
input images. Note that the weights within the deconvolutional
layers are also trainable during the learning process.

Compared with the original residual network, the advan-
tage of the proposed FCRN is that it can make pixel-wise
predictions, which is of valuable significance for skin lesion
segmentation task. In such a full convolutional architecture, we
can efficiently obtain accurate segmentation mask of an input
dermoscopy image with a single forward propagation in the
testing procedure. More importantly, with the per-pixel-wise
error back-propagation in the training procedure, each single
pixel can be considered as an independent training sample.
Consequently, the number of equivalent training samples is
greatly boosted, which is helpful to train very deep networks
with a large amount of parameters under limited training data.

By harnessing the discriminative features learned from the
very deep network, the proposed FCRN can produce good
prediction maps of skin lesions. However, when carefully
probing the prediction maps, we find that the prediction maps
neglect some detailed local information. The underlying reason
of this phenomenon is that the deconvolutional layers, albeit
being essential to construct an efficient end-to-end network,
have large strides (32 pixels in our implementation) and
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hence only exploit object-level features in upper layers without
sufficiently leveraging the low-level spatial information in
bottom layers of the network. Actually, when the FCRN
goes deeper, the size of receptive field is becoming larger
and the feature maps can capture more global and abstract
contextual features of skin lesions. In contrast, the features
from lower layers with smaller receptive fields can reflect
the local structure information of skin lesions, which is also
quite important for effective segmentation but discarded by
the single deconvolutional layer. In this regard, we propose to
integrate multi-scale contextual information in the proposed
FCRN. Specifically, the network generates several skin lesion
prediction maps by employing different levels of features in
FCRN, and then fuse these prediction maps with a summing
operation by the following deconvolutional layers. Please refer
to the shallow gray arrows and the fusion symbols in Fig. 2 (b).
As a result, the generated prediction maps encode both global
and local features of skin lesions, making the prediction more
accurate and robust.

2) Network Architecture: Fig. 2 (b) shows the architec-
ture of the FCRN. This proposed FCRN contains 16 residual
blocks in down-sampling path. Each residual block consists
of two 1 × 1 convolutional layers, one 3 × 3 convolutional
layer, three batch normalization layers and three ReLU layers,
as shown in Fig. 2 (a). Besides these residual blocks, it also
contains one 7 × 7 convolutional layer and one 3 × 3 max
pooling layer (both with stride 2) as prelayers.

As for the up-sampling path, we generate three kinds of
prediction maps by employing different levels of features.
They are 8-pixel stride prediction map, 16-pixel stride pre-
diction map and 32-pixel stride prediction map, respectively.
To do this, we add three 1 × 1 convolutional layers on top of
the residual block 7, the residual block 13 and the residual
block 16 to produce the 8-, 16- and 32-pixel stride prediction
maps, respectively. In order to obtain the final prediction
map, we first fuse the 32-pixel stride prediction map with the
16-pixel stride prediction map by adding a 2×up-sampling
deconvolutional layer on the top of 32-pixel one. Similarly,
we then add a 2×up-sampling deconvolutional layer on the
top of fused 16-pixel one to fuse the new 16-pixel stride
prediction map and the 8-pixel stride prediction map. Finally,
the network produces the final prediction map with the same
size as the input image by adding a 8×up-sampling deconvo-
lutional layer on top of the fused 8-pixel stride prediction map.
In this way, the skin lesion probability map incorporating
multi-scale contextual features can be generated after the
Softmax classification layer. Note that in the above fusion
scheme, all of the fusions are operated by pixel-wise additions.
After acquiring the skin lesion probability map, the final
skin lesion masks are generated by setting a threshold T
(empirically set as 0.5 in our experiments).

3) Training Procedure: To train the FCRN, we first crop
an sub-image from every original dermoscopy image with
ground truth by automatically figuring out the smallest rectan-
gle containing the lesion region and enlarging its length and
width by 1.1−1.3 times in order to include more neighboring
pixels for training. Then we randomly crop another sub-image
with the same length and width on the dermoscopy image

Fig. 3. Distribution of the relative size of skin lesions in our training
dermoscopy images.

to increase the negative training samples. Note that as the
objective of the FCRN is for segmentation, every pixel can
be considered as a training sample. We take all the pixels
on these cropped sub-images as training samples to train the
FCRN. In the testing phase, we do not perform the sub-
image cropping procedure or other detection-like processes.
We directly segment the whole dermoscopy images and the
prediction masks of the whole image were produced with an
overlap-tile strategy.

C. Skin Lesion Classification

1) Integration of the Two Stages: The skin lesions
have large variation in size.We exploit relative size, the ratio
between the size of smallest rectangle containing the lesion
region and the size of original image, to illustrate the variation.
Fig. 3 shows the distribution of the relative size of skin
lesions in our training dataset (900 dermoscopy images).
In this circumstance, if we directly perform skin lesion clas-
sification on original dermoscopy images, the variation of
lesion size will severely influence both the training and testing
performance, especially when the number of training samples
is quite limited. A straightforward way to solve this problem
is employing multi-scale models, where we can train several
networks with different scales and then fuse the prediction
results. However, this scheme is not optimal in our case, as the
range of the relative size is quite wide (from 0.15 to 0.95) and
there are no dominant values in the distribution, making it dif-
ficult to select appropriate scales to design multi-scale models.
In this regard, we propose to first segment the skin lesions from
dermoscopy images and then resize the segmented lesions into
a fixed size. Finally, we conduct the classification on the post-
processed lesions. Compared with training the classification
network directly on original dermoscopy images, training it
on segmented results can help it extract more representative
features specific to the lesion for better recognition, especially
under limited training data.

2) Classification Network Architecture: We construct
a very deep residual network to classify skin lesions based
on the segmentation results. The architecture of the network
is almost the same with that of the down-sampling path of
the proposed FCRN for segmentation, as shown in Fig. 2 (b).
The difference is that we add a 7 × 7 average pooling layer
followed by the 16th residual blocks to extract the global
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deep residual features. Some researchers found a small but
consistent advantage of replacing the Softmax layer with a
linear support vector machine layer when training CNNs [40].
Inspired by these findings, we exploit two classifiers, Softmax
classifier and support vector machine (SVM) classifier, to
obtain two predictions and then average them to get the
final results. Note that the Softmax classifier and the SVM
classifier are trained independently in an end-to-end way with
the proposed residual networks.

3) Training Procedure: When training the classification
network, we automatically crop an image patch containing
the whole skin lesion from each dermoscopy image and then
resize these image patches into a fixed size (250 × 250 in
our implementation). When testing, we also automatically
crop the image patch containing the whole segmented skin
lesion and feed the resized image patch into classification
networks. To increase robustness and reduce overfitting, we
further utilized the strategy of data augmentation to enlarge the
training dataset. The augmentation operators include rotation
(90, 180 and 270 degrees), translation and adding random
noise into cropped image patches.

III. EXPERIMENTS AND RESULTS

A. Dataset

We performed extensive experiments to evaluate our
method on a public challenge dataset of Skin Lesion Analysis
Towards Melanoma Detection released with ISBI 2016 [41].
This dataset is based on the International Skin Imaging
Collaboration (ISIC) Archive,1 which is the largest publicly
available collection of quality controlled dermoscopic
images of skin lesions. The challenge employs a subset of
representative images with 900 images as training data and
350 images as testing data. The ground truth is held out
by the organizer for independent evaluation. After releasing
the challenge result, the organizer released the ground truth
to encourage further investigations. In this case, we can
perform extensive experiments to comprehensively evaluate
our method. In this section, we present the challenge results
and ranking provided by the organizer as well as other
extensive experiment results conducted by ourselves.

B. System Implementation

The proposed method was implemented with C++ and
Matlab based on Caffe library [42] on a computer equipped
with a NVIDIA TITAN X GPU. The networks were trained
with Stochastic gradient descent (SGD) method (we set batch
size as 4, momentum as 0.9, weight decay as 0.0005, the
learning rate as 0.001 initially and reduced it by a factor
of 10 every 3000 iterations). We adopted batch normal-
ization (BN) [36] right after each convolutional layer to
accelerate the training speed except the three convolutional
layers for generating prediction scores. Specifically, accord-
ing to the recommendation configuration of Caffe library,2

1https://isic-archive.com
2http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchNormLayer.

html\#details

we added the BatchNormLayer and ScaleLayer after each
convolutional layer and froze the learning parameters of the
BatchNormLayer. In order to enhance the training efficiency,
we used a pretrained model (trained on ImageNet dataset) [31]
to initialize the weights of both the segmentation and clas-
sification networks. For the deconvolutional layers equipped
for the FCRN, we initialized them with bilinear interpolation
weights and set the learning rate of these deconvolutional
layers 1/10 of other layers, as we only need to slightly tune
the weights of deconvolution layers to obtain satisfactory
results. With the inference of fully convolutional architecture,
our method was very efficient; it averagely took 0.84s to
process one dermoscopy image with size of 1024×768 (0.52s
for segmentation and 0.32s for classification). In order to
encourage other researchers to further investigate the potential
of deep residual networks on medical image analysis tasks,
we released our implementation and network architectures in
the project website: http://www.cse.cuhk.edu.hk/~lqyu/skin/.

C. Evaluation Metrics

We applied the challenge evaluation metrics to evaluate
both the segmentation and classification performance of our
method. For the segmentation, the evaluation criteria include
sensitivity (SE), specificity (SP), accuracy (AC), Jaccard
index (JA) and Dice coefficient (DI). The organizer first
calculated these criteria for each test dermoscopy image and
then averaged each criterion on the whole testing dataset to
get the final results. The criteria are defined as:

AC = Ntp + Ntn

Ntp + N f p + N f n + Ntn
,

SE = Ntp

Ntp + N f n
, S P = Ntn

Ntn + N f p
,

J A = Ntp

Ntp + N f n + N f p
, DI = 2 · Ntp

2 · Ntp + N f n + N f p
,

(4)

where Ntp , Ntn , N f p and N f n denote the number of true
positive, true negative, false positive and false negative, respec-
tively, and they are all defined on the pixel level. A lesion
pixel is considered as a true positive if its prediction is lesion;
otherwise it is regarded as a false negative. A non-lesion pixel
is considered as a true negative if its prediction is non-lesion;
otherwise it is regarded as a false positive. Participants are
ranked based on the results of JA, as it is generally considered
as the most important criterion for segmentation.

As for the classification, there are four evaluation criteria,
including sensitivity (SE), specificity (SP), accuracy (AC)
and average precision (AP). The definition of SE, SP and
AC is the same as the metrics for segmentation, but here
they are measured at image level instead of pixel level. The
detailed definition of AP can be found in [41]. In the clas-
sification task, the numbers of melanoma and non-melanoma
lesions in testing dataset are quite imbalanced (melanoma/non-
melanoma = 75/304). In this case, the false positive rate
should be relatively small and the true negative rate should be
relatively large, resulting in most points fall in the left part of
the receiver operating characteristic (ROC) curve. Therefore,
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TABLE I
ARCHITECTURES OF DOWN-SAMPLING PATH IN

FCRN-38,−50 AND −101

TABLE II
COMPARISON OF ARCHITECTURES WITH DIFFERENT DEPTHS

the area under the ROC curve (AUC) has a high risk of being
noisy in this task. In this case, the organizer employed the AP
to rank the participants and measured AUC as a reference in
the challenge [41].

D. The Performance of Our Method in Segmentation

1) Experiments on Segmentation Network Depth:
In order to investigate if the increase of network depth can
enhance the discrimination capability of convolutional net-
works and thus make them better deal with the challenges of
melanoma recognition, we compared the performance of the
proposed FCRN with different depths (38, 50, and 101 layers,
respectively), fully convolutional VGG-16 network [29] and
fully convolutional GoogleNet [30]. Table I illustrates network
architectures of the down-sampling path in FCRNs with differ-
ent layers. All of the above five networks harnessed the same
up-sampling strategy and multi-scale contextual information
integration scheme. The difference is the different architectures
of the down-sampling path. As for the three FCRNs, the
difference is the different residual block numbers at each
scale. Not that for all the FCRNs with 38 layers, 50 layers
and 101 layers, we performed extensive experiments with
different architectures (maintain the total number of layers
while adjusting the number of residual blocks at different
scales) and selected the architectures with best results for
comparison. The results are listed in Table II.

It is observed that the FCRNs with 38 layers, 50 layers and
101 layers all achieve better performance in all five metrics
than the 16-layer VGG and 22-layer GoogleNet, except that
the SP of the 38-layer and 101-layer FCRN is lower than that
of the 16-layer VGG and the SE of the 38-layer FCRN is lower
than that of 22-layer GoogleNet, demonstrating the increase
of network depth can effectively enhance the discrimination
capability of convolutional networks. The better performance
of 50-layer FCRN than 38-layer FCRN further verifies that
network depth is a key factor of model expressiveness and we
can get better performance with a deeper network. However,
when the FCRN goes as deep as 101 layers, its performance is

TABLE III
COMPARISON OF FCRNs WITH DIFFERENT SCHEMES OF

MULTI-SCALE CONTEXTUAL FEATURE INTEGRATION

Fig. 4. The segmentation results of FCRN8, FCRN16 and FCRN32. The
blue, red, green and white contours indicate the segmentation results of
ground truth, FCRN8, FCRN16 and FCRN32, respectively.

worse than that of the 50-layer FCRN. One of the underlying
reasons of this phenomenon may be that the 101-layer FCRN
has about two times as much parameters as the 50-layer
FCRN, and it is difficult to effectively train such a deep
network with so many parameters using the limited training
data that we can acquire in our application. Nevertheless, the
101-layer FCRN achieves better performance than 38-layer
FCRN and 16-layer VGG, demonstrating the residual learning
technique can contribute the training process of such a deep
network with 101 layers. Note that as the insufficiency of
training data is a common problem in many medical image
analysis applications, we should carefully study the trade-off
between network depth and network performance under such
a situation for each application. In the following experiments,
we employ our 50-layer FCRN for comparisons as it exhibits
a good balance between network depth and performance. Note
that such a network is still substantially deeper than existing
networks in medical image analysis field.

2) Experiments on the Multi-Scale Contextual Inte-
gration Scheme: We further conducted a set of experiments
to demonstrate the importance of the multi-scale integration
scheme equipped for the proposed FCRN on avoiding the
disregard of local information in the fully convolutional archi-
tecture. We constructed three variants of the proposed FCRN
for the experiments. The first one only utilized the 32-pixel
stride predictions and we referred it as FCRN32. The second
one fused the 32-pixel stride predictions and the 16-pixel stride
predictions and we referred it as FCRN16. The third one fused
the 32-, 16-, and 8-pixel stride predictions and we referred
it as FCRN8. Table III shows the results of these variants
of FCRN. It is observed that the FCRN8 achieves the best
results among these three variants on all the five metrics,
demonstrating the effectiveness of the proposed multi-scale
integration scheme, which can be easily extended to other
semantic segmentation tasks. Fig. 4 further provides some
typical examples to demonstrate the advantage of the multi-
scale integration scheme, where the segmentation results of
FCRN8 are much better than other two networks.
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3) Qualitative Evaluation: Fig. 5 shows some segmenta-
tion results of the proposed FCRN on some challenging cases
of both melanoma and non-melanoma lesions, including cases
with low contrast (Fig. 5 (a), (b), (c) and (h)), cases with
irregular shapes (Fig. 5 (e), (f), (g)), and cases with severe
artifacts (Fig. 5 (g) and (h)). Our method achieves satisfactory
results in all of these challenging cases, demonstrating the
very deep network with effective learning mechanisms is a
promising way to meet the challenges of skin lesion analysis.

4) Comparison with Other Methods in the Chal-
lenge: There were totally 28 teams participating the ISBI
challenge of skin lesion segmentation and the challenge results
(only top ten teams) are listed in Table IV. Note that each
team was only allowed for one submission and the teams
were ranked according to the Jaccard index (JA) metric. Our
method ranked the second among the 28 teams. In fact,
most participants in the top ten employed CNNs to perform
the segmentation, demonstrating the popularity, as well as
performance gains, of CNNs in skin lesion analysis, surpassing
traditional methods based on hand-crafted features. However,
as we know, most of them exploited AlexNet [24], VGG-16
[29] or other shallower networks for this challenging task,
whereas we leveraged a substantially deeper network with
50 layers. Experimental results showed that our very deep
network outperformed most of our shallower counterparts,
demonstrating the discrimination capability gained from sub-
stantially increasing the network depth. The EXB team was
the only team that achieved better results than our method.
This may be because this team focused on the segmentation
task and employed some pre- and post- processing schemes
to refine the results [43], whereas the main aim of our FCRN
was to provide a good basis for the following recognition task
and we did not employ any compelling refinement step.

E. The Performance of Our Method in Classification

1) Classification With and Without Segmentation:
We employed a two-stage framework for automated melanoma
classification and recognition. In order to validate the necessity
of the two-stage scheme, we compared the classification per-
formance of our very deep residual network with and without
the segmentation stage. Both of these two experiments were
with the same network architecture, training parameters and
data augmentation strategies. Table V lists the experimental
results. It is observed that the two-stage scheme achieves
much better results than directly employing the very deep
residual network on the original dermoscopy images with-
out segmentation with 11.4% relative improvement on the
AP metric (the official ranking metric). This is because the
variation of lesion size is very large (see Fig. 3). Training
the classification network based on the segmentation results
instead of the original dermoscopy images can effectively
prevent the learning process being distracted by other struc-
tures and artifacts in images and hence can generate more
discriminative features for better recognition. It is worthwhile
to point out that the segmentation and classification stages
are seamlessly integrated in our framework and the whole
recognition process is performed in an automated way without
any manual interactions.

TABLE IV
RESULTS OF SKIN LESION SEGMENTATION CHALLENGE ON ISBI 2016

TABLE V
RESULTS OF CLASSIFICATION WITH AND WITHOUT SEGMENTATION

TABLE VI
COMPARISON OF DIFFERENT NETWORKS ON THE CLASSIFICATION

TASK

2) Experiments on Classification Network Depth:
We also investigated if the increase of network depth can
enhance the discrimination capability of convolutional net-
works on the classification task. Table VI lists the classification
performance of our very deep networks with 50 layers, VGG-
16 network [29] and GoogleNet [30] based on segmentation
ground truth. As we can see, the 50-layers residual network
gets the best performance on the AP metric than 16-layers
VGG network and 22-layers GoogleNet, which demonstrates
that increasing network depth can also improve the discrimi-
nation capability of networks on the classification task.

3) Experiments of Model Fusion: In our skin lesion
classification stage, we trained two networks with different
Softmax and SVM classifiers in an end-to-end way and we
found the simple average fusion can further improve the
classification performance. Table VII lists the skin lesion
classification performance for different classifiers in the testing
dataset. Noting that in order to better verify the performance
gain of this fusion model, we cropped the skin lesion regions
as the segmentation ground truth not as our segmentation
results. We have observed that the fusion model achieved
better performance on AP (the ranking metric), AC and SE
metrics, which demonstrates the effectiveness of this simple
fusion scheme.

4) Quantitative Evaluation and Comparison With
Other Methods: We participated the challenge of skin lesion
classification without providing any segmentation results. For
every input image, we first utilized the proposed FCRN
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Fig. 5. Examples of some skin lesion segmentation results from test images. The first and second rows are non-melanoma and melanoma lesions,
respectively. The red and blue contours indicate the segmentation results of our method and ground truth, respectively.

TABLE VII
RESULTS OF SKIN LESION CLASSIFICATION FOR DIFFERENT

CLASSIFIERS

model to obtain the skin lesion segmentation results and then
harnessed the very deep residual classification network to
produce the possibilities of melanoma. Note that, albeit having
two steps, our method produces the results in an automated
way. There were totally 25 teams submitting their results
for this challenge. The results were evaluated by using the
above-mentioned metrics and the teams were ranked according
to the average precision (AP). We list the top ten results
in Table VIII. We rank the first place in the challenge with
the AP value 0.637, demonstrating the advantages of the
proposed method in dealing with the challenges of the skin
lesion recognition. Actually, our network outperforms most of
its shallower counterparts by a large margin, which evidences
that increasing network depth with effective learning mecha-
nism can improve the discrimination capability of CNNs for
challenging medical image analysis tasks, even if the training
data are limited. Both the segmentation and classification
results demonstrate the effectiveness of our very deep residual
networks for automated skin lesion analysis.

IV. DISCUSSION

While recent years have witnessed the remarkable success of
deep convolutional neural networks in medical image analysis
tasks, there still exists a gap between manual assessment
of experts and automated evaluation of computers in many
clinical applications where the targeting objects have large

TABLE VIII
RESULTS OF SKIN LESION CLASSIFICATION CHALLENGE ON ISBI 2016

intraclass variation and small interclass variation [17], [44].
One encouraging news from recent studies in computer vision
field is that we still have much room to exploit both the
network width [32], [45] and depth [29]–[31] of CNNs to
improve their performance. In this paper, we focus on tapping
the potential of network depth and endeavor to investigate
if very deep CNNs are capable of dealing with complicated
medical image analysis tasks and achieving more performance
gains than their shallower counterparts. To the best of our
knowledge, we are not aware of any previous work that
explores or verifies the efficiency of very deep networks in
medical image analysis field.

Although network depth has been proved to be a
major determinant of model expressiveness, both in the
theory [27], [28] for a long time and in practice [29], [30]
recently, it is difficult to train an effective very deep network
because of the degradation problems, which will become
more and more severe when a network goes deeper. For
medical image analysis tasks, besides the above problems,
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another main obstacle to hinder the application of a very
deep CNN is the limited quality training dataset. In this
sense, whether very deep CNN is beneficial to challenging
medical applications with limited training data is still an open
problem and worthwhile to be explored and verified. We,
aiming at improving the performance of automated melanoma
recognition in dermoscopy images, propose a novel two-stage
framework based on very deep CNNs by leveraging a set of
effective training schemes. It is worthwhile to point out that
these training schemes are general enough that can be easily
extended to other medical image analysis tasks sharing the
similar challenges of skin lesion analysis.

One of issues of our framework is that if we can share the
weights between the segmentation and classification networks.
We did not share the weights in our implementation and
we think it is not beneficial to do that. The weights of
segmentation and classification networks are very similar since
the two network weights are both initialized by the pretrained
model on ImageNet [31]. However, the two networks should
not share the completely same weights. The segmentation task
was performed in the original scale and we did not adopt
image resize operations, whereas we resized the image patches
into a fixed size (250 × 250) when performing classification
(we zoomed out the images in most of cases). Therefore,
the segmentation and classification networks were performed
in different image scales and should adopt different features
although their weights can be similar.

One of the main concerns of employing deep CNNs in
medical image analysis tasks is the insufficiency of quality
training data. While the techniques employed in this work can
effectively alleviate this problem, we still encounter perfor-
mance degradation when the network goes deeply to more
than 100 layers (see the results reported in Table II). Compared
with the natural image processing tasks, which usually have
millions of training samples (e.g., ImageNet dataset [26]
having 1.2 million images for classification and MS COCO
dataset [46] having about 120K images for segmentation) to
support networks with hundreds of layers [31], [47], we face
the difficulty in fully exploiting the discrimination capability
gains of very deep CNNs under the circumstance of limited
training data. In addition, while the proposed framework
can achieve satisfactory results for both segmentation and
classification in most cases, there are still some failure cases,
as shown in Fig. 6. Fig. 6 (a) shows two failure cases of
segmentation, whereas Fig. 6 (b) shows some failure cases of
classification. It is observed that most of these failure cases
have low contrast, irregular shapes and artifacts around the
lesions. In the future, we shall investigate to integrate Bayesian
learning, especially probabilistic graphical models [48], [49]
into our networks to further enhance the discrimination capa-
bility of the very deep CNNs to tackle the limited training data
problem. On the other hand, the segmented results generated
by the proposed FCRN provide us a good basis for combining
hand-crafted clinical features and features learned from CNNs
to further improve the recognition performance.

Although this work, to the best of our knowledge, is
the first to apply very deep CNNs to solve a complicated
medical image analysis problem, i.e., automated melanoma

Fig. 6. Some failure cases of our framework: (a) failure cases of segmen-
tation, where red and blue contours indicate the segmentation results of
our method and the ground truth, respectively, and (b) melanoma lesions
neglected by our framework.

recognition, we believe very deep CNNs can find more
and more applications in medical domain. The techniques
exploited in this work may inspire more studies on how to take
full advantages of network depth to break the performance
bottleneck of many other complex medical image analysis
problems.

V. CONCLUSION

In this paper, we propose a novel method based on very
deep CNNs to meet the challenges of automated melanoma
recognition in dermoscopy images, which consists of two
steps: segmentation and classification. We seamlessly connect
the two steps and form an automated framework without need
of manual interaction. Compared with much shallower coun-
terparts, the very deep CNNs can generate features with high
discrimination capability, and hence improve the performance
of both segmentation and classification tasks. We further
construct a novel FCRN incorporating a multi-scale contex-
tual information integration scheme for accurate skin lesion
segmentation. Extensive experiments conducted on the open
challenge dataset of Skin Lesion Analysis Towards Melanoma
Detection in ISBI 2016 demonstrated the effectiveness of
the proposed method. Our study corroborates that very deep
CNNs with effective training mechanisms can be employed
to solve complicated medical image analysis problems, even
with limited training data. Further investigations include inte-
grating probabilistic graphical models into our networks to
further enhance the discrimination capability and exploring
our method on more applications.
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